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Abstract The analvsls of three-dimensional crack problems using the eigenstrain method yields a
set of hyper-singular integral equations. A key step in the numerical solution of these equations lies
in the accurate evaluation of the hyper-singular terms which exist only in the finite part sense. Based
on recent studies by the authors (Dai eI al.• 1993.1. Mee!? P!?ys. Solids 41, 1003) which employ an
analytical treatment of those integrals, a numerical method employing higher order non-conforming
elements within the eigenstrain technique is presented here. The object is to enhance computational
accuracy and efficiency. The numerical procedure is discussed in some detail. with the emphasis on
evaluation of the associated singular integrals. The performance of the method is assessed by re­
evaluating some well-known crack problems and comparing the results with theory where appro­
priate. as well as presenting some new data.

I. INTRODLCTION

The eigenstrain method has recently been established as one of the most powerful tools for
accurate analysis of planar cracks of arbitrary shape in a three-dimensional elastic body.
The essential idea underlying the technique is that the presence of cracks in the elastic
body can be modelled by a set of eigenstrains, originating from studies of inclusions and
inhomogeneifies pioneered by Eshelby (1957) and developed by Mura (1982), so that the
crack problem can be formulated by a set of two-dimensional hyper-singular integral
equations defined over the crack face [see. for example, Murakami and Nemat-Nasser
(1982), or Lee ('f al. (\987)].

In general, however. we have to resort to numerical methods to solve the hyper­
singular integral equations. Needless to say, the main difficulty in the numerical solution
of the hyper-singular integral equations is the accurate evaluation of the associated two­
dimensional hyper-singular terms which exist only in the so-called finite part sense (Had­
amard, 1952). Direct numerical calculation of the finite part integrals using a Gaussian
quadrature formula has been discussed by Kutt (1975) and Ioakimidis and Pitta (1988).
On the other hand, the two-dimensional hyper-singular integrals can also be interpreted in
a different way, following the application of Green's theorem for plane geometries (Lin
and KeeL 1987 : Willis. 1992) or Stokes theorem for curved geometries (Krishnasamy ef
al., 1990), so that the hyper-singular terms can be converted into the sum of regular contour
integrals and a two-dimensional weakly singular integral. A similar strategy, very popular
in the eigenstrain technique, is to evaluate the hyper-singular integral by a combination of
a closed form integral (in the finite part sense) and numerical integration (Cauchy's principal
value), as proposed by Murakami and Nemat-Nasser (\983). A corresponding numerical
procedure employing piecewise constant elements, although incorporating a global weight
function in order to model the behaviour of the displacement field near the crack front, has
been developed by Murakami and Nemat-Nasser (1983). and has been successfully used
by Murakami (\985). Lee and Keer (\986). Lin and Keer (\987) and Li and Hills (1990)
among others. to study various crack problems. However. in our opinion. the use of higher­
order elements is very desirable in order to achieve more accurate numerical solutions for
an arbitrary crack geometry.
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Fig. I. Geometry of the general class of problem to be solved.

More recently, the present authors have used an analytical integration method to
derive closed-form expressions for the evaluation of hyper-singular integrals (Dai et ai"
1993). The expressions are independent of the shape of the integration domain and the
position of the singular point (except when inside the domain), thus allowing the use of
higher-order non-conforming elements. The present paper addresses the formulation and
implementation of the eigenstrain method employing higher-order elements, bearing in
mind the arguments mentioned above. The numerical procedure is discussed in some detail
for piecewise linear elements. with the emphasis on the evaluation of the associated singular
integrals. The behaviour of the displacement field near the crack front is explicitly built
into the interpolation function for elements adjacent to crack front, and so the stress
intensity factor can be easily extracted from the displacement discontinuity solutions. The
performance of the method is assessed by re-solving some well-known crack problems and
comparing the results with theory where appropriate.

2. BASIC FORMlLATION

In order to formulate the problem. a local Cartesian coordinate system ox 1X2X, is fixed
on the crack plane with the x, axis perpendicular to the crack surface. as shown in Fig. 1.
The crack is modelled by dint of distributing displacement discontinuities over the crack
faces, the equivalents of eigenstrain in the present case. and the resulting integral equations
can be expressed as (Dai et al., 1993) :

r KII(x. y)h;(y) dS = ~ t: J (x).

.'
(1)

where hi is the displacement discontinuity across the crack face in direction j, KIj is the
known kernel function for a given elastic infinite or semi-infinite body. and t? is the traction
on the crack faces produced by the external loads applied to the elastic body but in the
absence of the crack.

For an isotropic elastic half-space the kernel function K'i reads as

(2)

where the first term K,'; is a singular function corresponding to an infinite body and K~j is
its image for a half-space, i.e. the corrective term to account for the presence of the free
surface. The derivation of K;I has been given by Dai et al. (1993).

Equation (I) is a set of hyper-singular boundary integral equations, and as mentioned
earlier the key step in solving these equations is the accurate evaluation of the singular
integrals associated with I ir', which exist only in the so-called Hadamard's finite part sense.
Analytical expressions for these integrals with hyper-singular kernels have been derived
recently by Dai et al. (1993). and for completeness the main results are summarized as
follows.
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As the function Ki, is regular we consider only the hyper-singular terms associated
with K;!" By adding and substracting back terms. we have

Is K;,(x, y)b/(y) dS = Is K;,(x, y)[b,(y) -h,(x) -h,(x)(y. -x)] dS

+h/x) LK;,(X, y) dS + h,.(x)LK,'/(x, y)(y; - x) dS. (3)

It is clear that if the density function biE C 1x (0 < 'Y. ~ I), at singular point x, the first
integral on the right-hand side of eqn (3) is at most weakly singular, where the singularity
is removable so that it can be evaluated by Gaussian quadrature formula. The second
integral has, of course, the same hyper-singular character as the original integral but with
unit density, whereas the third integral has a singularity of order l/r 2 and thus exists in the
Cauchy's principal value sense. As shown by Dai et al. (1993), the last two singular integrals
can be converted into regular contour integrals. In fact, we have

(4)

and

Here L, L'li' Af and M >1/, are regular integrals defined over the boundary of the integration
domain S:

M. = r~rr IjJlnrd8
o'li

(6)

(7)

(8)

(9)

with 1jJ, = (Yx-xJ/r. and r the distance from singular point (XI. x~) to the boundary of S.
It is pointed out that expressions (4) and (5) hold true for any subdomain of S as long

as the singular point is located within the subdomain rather than on its boundary. These
formulae will be employed at the element level in a numerical solution and the fact that
they are independent of the shape of the domain facilitates the use of higher-order non­
conforming triangular or quadrilateral elements.
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FIg. 2. Details of the non-conforming element employed.

J. NUMERICAL PROCEDCRE

In setting up a numerical solution procedure for hyper-singular integral equation (1),
it must be ensured that: (a) the derivatives of the density function hi are continuous at
collocation points [this smoothness requirement has been addressed by Martin and Rizzo
(1989)] ; and (b) the collocation points are located within the element rather than on the
sides of the element so that analytical expressions (4) and (5) can be employed at element
level. A non-conforming element is obviously an appropriate choice to meet the above
requirements, and hence we will explore it in the following discussion. Further, only a linear
element is discussed here as this enables us to use the closed-form of expressions (4) and
(5) (see Appendix), which dominate the evaluation of hyper-singular integral (3), and thus
playa key role in producing an accurate numerical solution of hyper-singular integral
equation (1). Nevertheless, the extension of the formulation to quadratic elements would
be straightforward, though a numerical quadrature would have to be used to evaluate
contour integrals (6)-(9).

3.1. Discretization of domain
The displacement discontinuity h, is approximated in a familiar form

(10)

within each element, where nc is the number of collocation points which are located inside
the element as shown in Fig. 2. hi is the value of the displacement discontinuity at these
collocation points ~'I and N'I is the corresponding shape function, i.e.

for triangular elements. and

N 1 = ~ (6~ 2 - I )

(11)

(12)

(13)

(14)

for quadrilateral elements. In order to model the correct behaviour of the displacement
field near the crack front, shape function N'I is modified by multiplying it by a given function
Wofthe form

~V(~) = v[2d(~)] (15)

for elements adjacent to the crack front only, where d is the minimum distance from an
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arbitrary point inside the element to the crack front. As function W here is defined for
crack front elements only, the C l

' continuity of the displacement discontinuity h, within
the element can be ensured.

Using approximation (10). integral equation (1) can be replaced by

I I KII(x,Y(~)),\)~)ll(~)ld~1 d~,h;"uJi = ~t?(x),

II I. "

(16)

where fle is the total number of elements, t = t(n, £/) is the global node number of the qth
collocation point within the nth element and III = I('.\";\~(ii is the determinant of the Jacobi
transformation matrix.

Enforcing eqn (16) at all collocation points. we have

K' h: = - t:'(x') (s. t = 1. 2..... fl,,). (17)

where fl" is the total number of collocation points, s = s(m. p) is the global node number of
the pth collocation point within the lnth element, x' is the global coordinate of collocation
point sand K;; is given by

K; I Ki/(x', Y(~));\I(~)ll(~)1d~ 1 d~2'
.\

(18)

Equation (18) represents a system of algebraic equations which can be solved by standard
Gaussian elimination methods.

3.2. Calculatiofl ofnwtri\ I' {CII/C/I ts K:,,,n,, '" ",I,'

To evaluate the matrix dements K;:, two cases need to be taken account of separately,
depending on the position of the collocation point.

Case I : m =1= n. In this case the integral is regular as the collocation point x' lies outside
the integral domain Sit in integral (18) so that it can be calculated numerically by a standard
Gaussian quadrature formula as follows (Zienkiewicz, 1977)

,

K.: = I I 1I,1I/,K'I(x·. y(~'i!t))N,,(~'1h)ll(~qh)l,
if 1 /i

(19)

where fl, is the number of Gauss points in the ~, direction, = (~';, ~~) is the coordinate
of the 9 x h Gauss point. and 1\" and Il'h are the associated weighting factors. To enhance
the computational efficiency and accuracy in a numerical implementation, the number of
Gauss points is not fixed. but varies with the distance from the coIlocation point to the
element. A modification of the criterion given by Lachat and Watson (1976) can be used
for this purpose. If this criterion is not achieved. the domain of integration is subdivided
and the Gaussian quadrature formula (19) is applied to each subdomain.

It is pointed out that the triangle has to be transformed into a standard square in order
to apply formula (19) to triangular elements.

Case 2 : m = n. As we can see from eqn (2), the integrand K" in eqn (18) has con­
tributions from both K; and K:,. The latter is a regular function so that Gaussian quadrature
formula (19) can still be used to evaluate this part of the integral; but the integral associated
with Kl/ is hyper-singular as the collocation point lies within the the integral area Sn- Its
numerical evaluation has to be performed in terms of eqns (3)-(5) except that the density
hi is replaced by its interpolation function N'I and the domain of integration is limited to
the element under consideration, i.e.
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Fig. 3. Sub-division of the elements needed to evaluate the weakly singular integral.

~

K;: = J K,'/(x',Y(O)[Nqm-Nl((,")-Nq;(~P)(y:-x;)]IJmld~1 d~2
s"

+N'/(~P) LKJ,(Xs ,Y)dS+N4 .;(¢P) LKJ;(X"y)(y;.-r;:)dS, (20)

where ~P is the local coordinate of collocation point x,(m.p
), and the contribution from K;j

has been ignored. The second and third integrals on the right-hand side of eqn (20) can be
evaluated by the results embodied in eqns (4) and (5) and in the present case closed-forms
are available (see Appendix), whereas the first integral is weakly singular and can be
evaluated using the following strategy. To simplify the description, this integral is rewritten
as

(21)

where p = I ~ - ~PI and F (~I' ~2) is the product of the original integrand and p. Hence it is
bounded and continuous at ~p. The 1/P singularity of the integral is explicitly expressed
here. To evaluate this integral we divided the domain of integration into four or three
triangles as shown in Fig. 3, and each triangle is transformed into a square, again using a
degenerate mapping. For example_ for triangle L':>12p in Fig. 3(a), the corresponding coor­
dinate transformation is

(22)

(23)

so that the contribution from this triangle to the integral I is

(24)

where the singularity of the integrand has been removed. Hence the standard Gaussian
quadrature formula (19) can be employed again for its numerical evaluation. Integrations
over the remaining triangles can be treated in the same way. This strategy to remove the
singularity is a simple extension of the method proposed by Lachat and Watson (1976),
where the collocation point is located on the corner or midside of the element.
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The method dcscrihed in the preceding section has heen employed to re-solve several
well-known crack prohlems so that its performance might be assessed. Further, growth
analysis of a surface-breaking crack has heen carried out to demonstrate the versatility of
the method. where it is assumed that the crack tends to evolve into a shape which produces
a constant stress intensity factor around the front.

4.1. An elliptical erack ill an illfinite hod]"
Consider an elliptical crack in an infInite body which suffers a remote uniform tension

0'0 perpendicular to the crack plane and a uniform shear traction TO parallel to the minor
axis of the ellipse. This is. of course. a well-known problem possessing an exact answer.
Also, it has been treated hy the eigenstrain method hefore. but employing a global weight
function which incorporates the known asymptotic behaviour around the crack front. In
this formulation. we will not employ this strategy. hut use the standard weighting function,
applied to the crack front elements only [eqn ( 15)]. as if the crack had an arbitrary shape.
This therefore represents a t~lircr tcst of the scheme. when it is to be used to study cracks
of more complex shape. Because of the symmetry of the problem only one-quarter of the
domain needs to be discretizcd. and typical meshes employed are shown in Fig. 4 with 36
elements and 124 collocation points. The variations of dimensionless stress intensity factors
Kt!O'(J,j(nb).KIL,(J,(nh) and Kill T'\(nh) along the crack front are plotted in Fig. 5 for
alb = 1, 1.5.2. together with the corresponding analytical solution (Kassir and Sih. 1966).
where Poisson's ratio is set to 0.3. It is ohserved that the numerical procedure gives very
accurate solutions. The maximum error. which occurs in Kill when alb = 2, is less than
1.8%.
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Fig 5. Variation of stress intensity factors occurring around the crack front for the geometry of
Fig. 4

4.2. A square crack in an infinite hod\'
A square crack in an infinite body suffering a remote uniform tension (To perpendicular

to the crack faces and a uniform shear traction TO parallel to one pair of sides is considered.
It provides another vehicle for testing the procedure, which provides valuable insight into
its power and characteristics.

A quarter of the square is idealized by a 6 x 6 mesh with 35 elements, see Fig. 6, where
the side AB represents the direction in which the shear traction is applied. The opening
mode stress intensity factor at point A, where the maximum occurs, is listed in Table I (this
was actually found from a 10 x 10 mesh), together with other results available in the
literature (Mastrojannis et al., 1979 ; Murakami and Nemat-Nasser, 1983 ; Isida et ai.,
1993). It is seen that all results are in close agreement.

This example provides an excellent opportunity to study the convergence of the pro­
posed numerical procedure as the mesh can be uniformly and systematically refined. To
this end, meshes at various levels of refinement are employed and a comparison of the
corresponding results is made in Table 2 which clearly demonstrates the convergence
characteristics. It is not surprising that a moderate mesh can produce very accurate results,
as the displacement field near the crack front was correctly modelled and hyper-singular
integrals were evaluated largely in closed-form.
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Fig. 6. Geometry of the problem: a square crack in an infinite body subject to uniform far-field
tension and shear traction.

Table I. Comparison of stress intensity factors at point A or
C of a square crack

Authors

Present authors
Mastrojannis el al. (1979)
Murakami and Nemat-Nasser (1983)
Isida el al. (1993)

K,!u\j(rca)

0.7550
0.745
0736
0.7533

4.3. Growth analysis ofa surface-breaking crack
Consider a surface-breaking crack in a half-space which is subject to a remote, uniform,

cyclic tension aD, such that the crack grows by fatigue. There is considerable evidence, both
experimental and theoretical, to support the thesis that such flaws grow and develop so as
to give rise to a constant stress intensity factor around the front [see, for example, Gilchrist
et al. (1992)]. It is interesting to speculate on the development of the shape of cracks as
they progress towards this condition. This is also of practical interest as it means that,
under some conditions, the subsurface shape of a crack may be inferred from the surface­
breaking length alone.

In this example, we take the initial shape of the crack to be a semi-circle (thumbnail),
and to avoid the difficulty of the change of order of singularity close to the free surface the

Table 2. Convergence studies of stress intensity factors for a square crack

Mesh

6x6
7x7
8x8
9x9

lOx 10

0.75557
0.75532
0.75517
0.75505
075498

KIl!r" -J(rca)(C)

0.84680
0.84659
0.84645
0.84635
0.84629

KIII /1:0 .j(rca)(A)

0.65986
0.65967
0.65955
0.65947
0.65941
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Fig. 7 Evolution of the crack front shape for a semi-circular surface-breaking crack subject to
uniform far-field tension.

Poisson's ratio is set to zero. t The stress intensity is calculated at all nodal points on the
present crack front. and then a crack growth condition similar to the Paris law, i.e.

where C and m are material constants and KIC is the fracture toughness of the material, is
employed to predict the new position of these nodes, thus generating a new crack front.
The positions of the crack front at various instants as the crack depth grows from b to
around 2b are depicted in Fig. 7. Also shown, by the dotted line on the figure, is an ellipse,
fitted through the same end points. It may be seen that the final shape is not quite semi­
elliptical in form. The variations of dimensionless stress intensity factor along the crack
front at selected instants, corresponding to some of the crack fronts shown in Fig. 7, are
plotted in Fig. 8. This clearly shows that evolution towards a constant-K solution is well­
advanced after three progressions of the crack front, and thereafter progressive refinement
towards such a state occurs rather gradually; this is also apparent from Fig. 7, where it
may be seen that the lines denoting the crack front become almost parallel quite quickly.
Also shown in Fig. 8 is the variation in crack tip stress intensity factor around the crack
front for a semi-elliptical crack. Note that the graph has a false origin.

5. COt"CLUSION

Based on our recent work on the eigenstrain method, especially on an analytical
treatment for the associated hyper-singular integral, we have developed a numerical pro­
cedure using linear non-conforming elements within the eigenstrain technique. As the
correct behaviour of the displacement field near the crack front has been explicitly incor­
porated in the associated elements. the stress intensity factors can be abstracted accurately
and directly. A numerical scheme for the evaluation of the weakly singular integral which
arises has been detailed. and a closed form solution for those contour integrals needed has
also been given (Appendix). Numerical tests have shown that accurate solutions can be

tit is known that the order of smgularity obtaining where a crack front breaks a free surface is dependent
on the value of Poisson's ratio and on the angle between the crack front and the surface. In general the singularity
IS weaker than r I: However. if \. is chosen to be zero this problem is obviated. as the strength of the singularity
remains unchanged.
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achieved by the method proposed and convergence of the solutions can also be anticipated
even when only a moderately refined mesh is used.
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APPE"IDIX: CLOSED FORM OF CO;''HOUR INTEGRALS L, L'/I. M AND M,p;

For a linear triangular and quadrilateral clement. contour integrals L, L,p. AI.,. and M,!I': can be expressed in
closed form. Thc cxpressions for Land L,r have been given by Dai el al. (1993) and for completeness they are
reproduced here together with the expressions of M. and M'II;" Due to the symmetrical property L,p = L p"
.'vf'(1 = Mil" = AI 'Ii and thc relationship L" = L ~ L/ lli . Mm = M, ~ M,!I!lx #- fJ), only those independent com­
ponents are given here.

, , I
L L: ~-[cosO,. --cos II. t k,(sinO,. ~sinO,)]

, I til
(AI)

L"
I .L: ~- [cos' 0,

I .1(/,
cos' Otk,I3 smO, -- 3sinOi~sinJ 11,+, tsinJ II,)] (A2)

\f .. ,

.. -: I .'
L,_ = ') >~-I~sm·Ii.. +-sin;0,tk,(~cos'0i_:tcosJe,)]

, ...... 1_'([1

, I,
M, = " ~ - I

'- ,(ltk)

\f.c 'I" I
~'v'(] tkO,

')_~_1_ [_ cosll .. tcosO,tk,(sinO", ~sinO,)t I. Ii]
'-'3(1tk,') J(ltk,')

\f I', Ci "'f'-..!..---.- [ -cos 0 ,tcos 0, t k,(sin 0" , ~ sin 0,) ~ k,' Ii]'
~'3(1 +k") . . J(l tk,')

where 1/ is the numher of sides of the element and a" k" 0, and f i are defined as follows:

y'~
,]

- k,(x', - ylill(f, I,

yl,

1" =
\' -- r'l

IC
0, = tan'

(cosO, ,+k,sinO,_, t..j(ltk,'llr,.,
= In-----

(COS 0, t 1" sin 0, tJ(l tk,'»)r,

in which r is the distance from collocation point IX',' ,I~) to the ith node (x',. xS). and .Y;-' = x~.

(A3)

(M)

(A5)

(A6)

(A7)


